Сумма двух натуральных чисел равна 1370. Если в конце первого приписать 5, а в конце второго отбросить 7, то числа окажутся равными. Найти эти числа.(Математика)

3 Авг 2021 в 19:42
95 +1
0
Ответы
1

Пусть первое число равно а, а второе - b.
Тогда по условию задачи
а + b = 1370 111 10a + 5 = 10b + 7 222

Выразим из уравнения 222 а:
а = 10b+2−510b + 2 - 510b+25/10 = 10b−310b - 310b3/10 = b - 0.3 333

Подставим полученное выражение для а в уравнение 111:
b - 0.3 + b = 1370
2b - 0.3 = 1370
2b = 1370 + 0.3
2b = 1370.3
b = 1370.3/2
b = 685.15

Теперь найдем значение а, подставив полученное значение b в уравнение 333:
а = b - 0.3 = 685.15 - 0.3
а = 684.85

Итак, искомые натуральные числа равны 684 и 685.

17 Апр 2024 в 13:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир