В треугольнике ABC со сторонами AC =12, AC=18 проведена прямая MN, параллельная AC (M принадлежит AB, N принадлежит BC), MN=9 см. Найдите BM.

6 Сен 2021 в 19:41
98 +1
0
Ответы
1

Поскольку прямая MN параллельна стороне AC треугольника ABC, то треугольники AMN и ABC подобны.

Тогда можно составить пропорцию по сторонам подобных треугольников:

AM/AB = MN/AC

AM/(AB - AM) = MN/AC

AM/(AB - AM) = 9/12

AM/(AB - AM) = 3/4

4AM = 3AB - 3AM

7AM = 3AB

AM = 3AB/7

Так как AB = AM + BM, то мы можем найти BM:

AB = 7AM/3

AB = 7*(3AB/7)/3

AB = 3

Теперь можем найти BM:

BM = AB - AM

BM = 3 - 3/7

BM = 18/7

Итак, BM = 18/7 см.

17 Апр 2024 в 12:58
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир