Периметр прямоугольника равен 24, а площадь 35. Найдите сторонs прямоугольника

30 Окт 2021 в 19:46
120 +1
0
Ответы
1

Пусть длина прямоугольника равна а, а ширина равна b.

Тогда периметр прямоугольника равен:
P = 2a + 2b = 24

И площадь прямоугольника равна:
S = a*b = 35

Из уравнения на периметр:
2a + 2b = 24
a + b = 12
a = 12 - b

Подставляем a из первого уравнения во второе:
(12 - b)*b = 35
12b - b^2 = 35
b^2 - 12b + 35 = 0
(b - 5)(b - 7) = 0

Отсюда получаем два возможных значения для b: 5 и 7

Так как ширина не может быть больше длины, то b = 5 и а = 12 - 5 = 7

Итак, стороны прямоугольника равны 7 и 5.

17 Апр 2024 в 09:16
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир