Диагональ BD параллелограмма ABCD равна 7 см.Периметр треугольника ABD равен 24 см.Найдите периметр параллелограмма ABCD

17 Ноя 2019 в 19:44
153 +1
0
Ответы
1

Обозначим стороны параллелограмма как AB = a, AD = b. Так как диагональ BD параллелограмма равна 7 см, то по теореме Пифагора в треугольнике BCD получаем:

BC^2 + CD^2 = BD^2
a^2 + b^2 = 7^2
a^2 + b^2 = 49

Периметр треугольника ABD равен 24 см:

AB + AD + BD = 24
a + b + 7 = 24
a + b = 17

Теперь мы получили систему уравнений:

a^2 + b^2 = 49
a + b = 17

Из второго уравнения получаем, что b = 17 - a. Подставляем это в первое уравнение:

a^2 + 17−a17 - a17a^2 = 49
a^2 + 289 - 34a + a^2 = 49
2a^2 - 34a + 240 = 0
a^2 - 17a + 120 = 0
a−12a - 12a12a−5a - 5a5 = 0

Отсюда получаем два корня a = 12 и a = 5. Подставляя оба значения в уравнение a + b = 17, получаем b = 5 и b = 12 соответственно.

Таким образом, периметр параллелограмма ABCD равен 2a+ba + ba+b = 212+512 + 512+5 = 34 см.

19 Апр 2024 в 01:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир