В прямоугольном треугольнике проведена биссектриса прямого угла. Найдите меньший угол, который она образует с гипотенузой, если один из углов треугольника равен 22 градуса

18 Ноя 2019 в 19:56
246 +1
0
Ответы
1

Пусть меньший угол, который биссектриса образует с гипотенузой, равен x градусов.

Так как биссектриса делит прямой угол пополам, то другой угол, образованный биссектрисой и гипотенузой, также равен x градусов.

Теперь рассмотрим правильный треугольник, образованный биссектрисой, гипотенузой и одним из катетов.

Угол между биссектрисой и катетом равен 22 градуса, а угол между биссектрисой и гипотенузой равен x градусов.

Сумма углов треугольника равна 180 градусам, поэтому x + 22 + 90 = 180.
x + 112 = 180.
x = 180 - 112 = 68.

Таким образом, меньший угол, который биссектриса образует с гипотенузой, равен 68 градусов.

19 Апр 2024 в 01:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир