В треугольнике MPK на продолжение медианы ME заточку E отложен отрезок ED,равный ME.Докажите,что MPDK-параллелограмм

2 Янв 2020 в 19:40
115 +1
0
Ответы
1

Доказательство:

Поскольку ME - медиана треугольника MPK, то ME делит сторону PK пополам. Поэтому PK = 2*ME = ED.

Так как PK = ED, то PD = EK, так как ME = ED.

Также, так как EK = DP, то треугольник DEK равнобедренный.

Отсюда следует, что угол KED равен углу KDE.

Из этого следует, что угол KPM равен углу KDP таккакMPпараллельноEDиPKтак как MP параллельно ED и PKтаккакMPпараллельноEDиPK, а угол PKM равен углу MPD таккакDEKравнобедренныйтак как DEK равнобедренныйтаккакDEKравнобедренный.

Значит, по условию, треугольник MPK - параллелограмм.

18 Апр 2024 в 21:59
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир