Для доказательства равенства двух прямоугольных треугольников, достаточно показать, что у них равны гипотенузы главныегипотенузыглавные гипотенузыглавныегипотенузы.
Пусть даны два прямоугольных треугольника ABC и DEF, где AB = DE и AC = DF катетыодноготреугольникаравнысоответственнокатетамдругогокатеты одного треугольника равны соответственно катетам другогокатетыодноготреугольникаравнысоответственнокатетамдругого.
Тогда AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2потеоремеПифагорапо теореме ПифагорапотеоремеПифагора
Для доказательства равенства двух прямоугольных треугольников, достаточно показать, что у них равны гипотенузы главныегипотенузыглавные гипотенузыглавныегипотенузы.
Пусть даны два прямоугольных треугольника ABC и DEF, где AB = DE и AC = DF катетыодноготреугольникаравнысоответственнокатетамдругогокатеты одного треугольника равны соответственно катетам другогокатетыодноготреугольникаравнысоответственнокатетамдругого.
Тогда AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2 потеоремеПифагорапо теореме ПифагорапотеоремеПифагора
DF2=DE2+EF2DF^2 = DE^2 + EF^2DF2=DE2+EF2 потеоремеПифагорапо теореме ПифагорапотеоремеПифагора
Но так как AB = DE и AC = DF, имеем:
AC2=DE2+BC2AC^2 = DE^2 + BC^2AC2=DE2+BC2
DF2=AB2+EF2DF^2 = AB^2 + EF^2DF2=AB2+EF2
Таким образом, гипотенузы треугольников равны, следовательно, треугольники ABC и DEF равны.