Диагональ прямоугольной трапеции равна 8см. и образует с одной из сторон угол 60градусов.найдите стороны прямоугольника.

31 Янв 2020 в 19:44
114 +1
0
Ответы
1

Пусть основания трапеции равны a и b, а высота h.

Так как диагональ равна 8 см и образует угол 60 градусов с одной из сторон, то можем записать следующие уравнения:

a^2 + h^2 = 8^2 111 b^2 + h^2 = h^2 222

Так как угол между диагональю и b равен 60 градусов, то можем записать:

cos606060 = b / 8
b = 8 * cos606060

Таким образом, система уравнений примет вид:

a^2 + h^2 = 64
8∗cos(60)8*cos(60)8cos(60)^2 + h^2 = h^2

a^2 + h^2 = 64
444^2 + h^2 = h^2

решив это уравнение, получаем:

a = 8
b = 4
h = 4√3

Таким образом, стороны прямоугольника равны 8 см и 4 см, а высота равна 4√3 см.

18 Апр 2024 в 18:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир