Радиус основания цилиндра равен 3 см, а диагональ его осевого сечения равна 10 см. Найдите объем цилиндра.

29 Июн 2020 в 19:43
129 +1
0
Ответы
1

Для решения данной задачи нам потребуется найти высоту цилиндра.

Обозначим радиус основания цилиндра как R = 3 см, а диагональ его осевого сечения как d = 10 см.

Так как диагональ осевого сечения цилиндра является гипотенузой прямоугольного треугольника, образованного радиусом основания и высотой цилиндра, получаем следующее:

d^2 = R^2 + h^2

10^2 = 3^2 + h^2
100 = 9 + h^2
h^2 = 91
h = √91 ≈ 9.54 см

Теперь мы можем найти объем цилиндра по формуле:

V = πR^2h
V = π3^29.54
V ≈ 85.45 см^3

Ответ: объем цилиндра равен около 85.45 см^3.

18 Апр 2024 в 10:50
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир