а) log3x+1x+1x+1 = 0x + 1 = 3^0x + 1 = 1x = 0
б) log2x−5x-5x−5 + log2x+2x+2x+2 = log2181818 log2(x−5)(x+2)(x-5)(x+2)(x−5)(x+2) = log2181818 x−5x-5x−5x+2x+2x+2 = 18x^2 - 3x - 10 = 18x^2 - 3x - 28 = 0x−7x - 7x−7x+4x + 4x+4 = 0x = 7, x = -4
в) log3^x - log3x = 2log3^x / 3 = 33^log3xlog3^xlog3x = 3^3x = 3^3x = 27
а) log3x+1x+1x+1 = 0
x + 1 = 3^0
x + 1 = 1
x = 0
б) log2x−5x-5x−5 + log2x+2x+2x+2 = log2181818 log2(x−5)(x+2)(x-5)(x+2)(x−5)(x+2) = log2181818 x−5x-5x−5x+2x+2x+2 = 18
x^2 - 3x - 10 = 18
x^2 - 3x - 28 = 0
x−7x - 7x−7x+4x + 4x+4 = 0
x = 7, x = -4
в) log3^x - log3x = 2
log3^x / 3 = 3
3^log3xlog3^xlog3x = 3^3
x = 3^3
x = 27