Найдите площадь осевого сечения конуса диаметр основания и высота которого равны соответственно 16 см и 5 см.

19 Янв 2021 в 19:42
167 +1
0
Ответы
1

Для нахождения площади осевого сечения конуса используется формула S = π r l, где r - радиус основания конуса, l - образующая конуса.

Для начала найдем радиус основания конуса, который равен половине диаметра:

r = 16 см / 2 = 8 см

Теперь найдем образующую конуса по теореме Пифагора: l^2 = r^2 + h^2, где h - высота конуса.

l^2 = 8^2 + 5^2
l^2 = 64 + 25
l^2 = 89
l = √89

Теперь подставим значения радиуса и образующей в формулу площади осевого сечения конуса:

S = π 8 √89 ≈ 3.14 8 9.43 ≈ 237.15 см²

Итак, площадь осевого сечения данного конуса составляет примерно 237.15 см².

17 Апр 2024 в 21:14
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир