Найти производную функции y=arcsin(10x) y=arccos√3x y=(arctg(2x))^10x y=sin(2x+1)arctg(-x) y=arccos(2x)/3-x^2

26 Янв 2021 в 19:42
160 +1
0
Ответы
1

y' = d/dx arcsin(10x)arcsin(10x)arcsin(10x) = 1 / sqrt1−(10x)21 - (10x)^21(10x)2 * 10
y' = 10 / sqrt1−100x21 - 100x^21100x2

y' = d/dx arccos√3xarccos√3xarccos√3x = -1 / sqrt1−(√3x)21 - (√3x)^21(√3x)2 * √3
y' = -√3 / sqrt1−3x21 - 3x^213x2

y' = d/dx (arctg(2x))10x(arctg(2x))^10x(arctg(2x))10x = 10 arctg(2x)arctg(2x)arctg(2x)^9 d/dx arctg(2x)arctg(2x)arctg(2x) y' = 10 arctg(2x)arctg(2x)arctg(2x)^9 1/(1+(2x)2)1 / (1 + (2x)^2)1/(1+(2x)2) 2
y' = 20 arctg(2x)arctg(2x)arctg(2x)^9 / 1+4x21 + 4x^21+4x2

y' = d/dx sin(2x+1)arctg(−x)sin(2x+1)arctg(-x)sin(2x+1)arctg(x) y' = cos2x+12x+12x+12 arctg−x-xx + sin2x+12x+12x+1 −1/(1+(−x)2)-1 / (1 + (-x)^2)1/(1+(x)2) y' = 2cos2x+12x+12x+1 arctg−x-xx - sin2x+12x+12x+1 / 1+x21 + x^21+x2

y' = d/dx arccos(2x)/(3−x2)arccos(2x)/(3-x^2)arccos(2x)/(3x2) y' = (−1/sqrt(1−(2x)2))<em>2/(3−x2)−arccos(2x)</em>(−2x)/(3−x2)2(-1 / sqrt(1 - (2x)^2)) <em> 2 / (3 - x^2) - arccos(2x) </em> (-2x) / (3 - x^2)^2(1/sqrt(1(2x)2))<em>2/(3x2)arccos(2x)</em>(2x)/(3x2)2 / 3−x23 - x^23x2 y' = −2/sqrt(1−4x2)−2xarccos(2x)/(3−x2)2-2 / sqrt(1 - 4x^2) - 2xarccos(2x) / (3 - x^2)^22/sqrt(14x2)2xarccos(2x)/(3x2)2 / 3−x23 - x^23x2

17 Апр 2024 в 21:09
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир