To square the expression 3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4, we will distribute and simplify using the formula a−ba - ba−b^2 = a^2 - 2ab + b^2.
3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4^2= (3/5a5b)2−2<em>(3/5a5b)</em>(2/3a3b4)+(2/3a3b4)2(3/5a^5b)^2 - 2<em>(3/5a^5b)</em>(2/3a^3b^4) + (2/3a^3b^4)^2(3/5a5b)2−2<em>(3/5a5b)</em>(2/3a3b4)+(2/3a3b4)2 = (9/25)(a10)(b2)−(4/5)(a8)(b5)+(4/9)(a6)(b8)(9/25)(a^10)(b^2) - (4/5)(a^8)(b^5) + (4/9)(a^6)(b^8)(9/25)(a10)(b2)−(4/5)(a8)(b5)+(4/9)(a6)(b8) = 9/259/259/25a^10b^2 - 4/54/54/5a^8b^5 + 4/94/94/9a^6b^8
Therefore, the square of the expression 3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4 is 9/259/259/25a^10b^2 - 4/54/54/5a^8b^5 + 4/94/94/9a^6b^8.
To square the expression 3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4, we will distribute and simplify using the formula a−ba - ba−b^2 = a^2 - 2ab + b^2.
3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4^2
= (3/5a5b)2−2<em>(3/5a5b)</em>(2/3a3b4)+(2/3a3b4)2(3/5a^5b)^2 - 2<em>(3/5a^5b)</em>(2/3a^3b^4) + (2/3a^3b^4)^2(3/5a5b)2−2<em>(3/5a5b)</em>(2/3a3b4)+(2/3a3b4)2 = (9/25)(a10)(b2)−(4/5)(a8)(b5)+(4/9)(a6)(b8)(9/25)(a^10)(b^2) - (4/5)(a^8)(b^5) + (4/9)(a^6)(b^8)(9/25)(a10)(b2)−(4/5)(a8)(b5)+(4/9)(a6)(b8) = 9/259/259/25a^10b^2 - 4/54/54/5a^8b^5 + 4/94/94/9a^6b^8
Therefore, the square of the expression 3/5a5b−2/3a3b43/5a^5b - 2/3a^3b^43/5a5b−2/3a3b4 is 9/259/259/25a^10b^2 - 4/54/54/5a^8b^5 + 4/94/94/9a^6b^8.