Решите уравнение x^2+2x+3=0 в комплексных числах

10 Мая 2021 в 19:40
117 +1
0
Ответы
1

Для решения уравнения x^2 + 2x + 3 = 0 в комплексных числах мы используем формулу для нахождения корней квадратного уравнения.

Сначала находим дискриминант уравнения D = b^2 - 4ac, где a = 1, b = 2, c = 3.

D = 2^2 - 413 = 4 - 12 = -8

Так как дискриминант отрицательный, то корни уравнения будут комплексными.

Используем формулу для нахождения корней квадратного уравнения:

x = (-b ± √D) / 2a

x = (-2 ± √(-8)) / 2*1

x = (-2 ± 2i√2) / 2

Таким образом, корни уравнения x^2 + 2x + 3 = 0 в комплексных числах будут:

x1 = (-2 + 2i√2) / 2 = -1 + i√2

x2 = (-2 - 2i√2) / 2 = -1 - i√2

Ответ: x1 = -1 + i√2, x2 = -1 - i√2.

17 Апр 2024 в 18:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир