Решите неравенство (5х-3х)(1-х)>1 найти значения а , при которых уравнение ax(во второй степени)+3x-2=0

27 Мая 2021 в 19:46
155 +1
0
Ответы
1

Дано неравенство: 5x−3x5x - 3x5x3x1−x1 - x1x > 1
Упростим выражение в скобках: 2x1−x1 - x1x > 1
Распишем дальше: 2x - 2x^2 > 1
Приведем все слагаемые в левую часть: 2x - 2x^2 - 1 > 0
Упорядочим по убыванию степени: -2x^2 + 2x - 1 > 0

Теперь найдем корни уравнения ax^2 + 3x - 2 = 0
a - коэффициент при x^2
b - коэффициент при x
c - свободный член

Дискриминант D = b^2 - 4ac
D = 3^2 - 4a−2-22 = 9 + 8a

Корни уравнения:
x1 = −3+√(9+8a)-3 + √(9 + 8a)3+(9+8a) / 2a
x2 = −3−√(9+8a)-3 - √(9 + 8a)3(9+8a) / 2a

Уравнение двукратный корень, когда D = 0:
9 + 8a = 0
8a = -9
a = -9/8

Таким образом, уравнение ax^2 + 3x - 2 = 0 имеет двукратный корень при a = -9/8.

17 Апр 2024 в 18:04
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир