2) To simplify sina+2sin(pi/3−a)sina+2sin(pi/3-a)sina+2sin(pi/3−a)/2sin(pi/6−a)−cosa2sin(pi/6-a)-cosa2sin(pi/6−a)−cosa, we can convert the sine and cosine of π/3 and π/6 using trigonometric identities sinπ/3π/3π/3 = √3/2, sinπ/6π/6π/6 = 1/2, and cosπ/6π/6π/6 = √3/2.
1) We can simplify sin2a/1+cos2a1+cos2a1+cos2a by using the double angle identity sin2θ = 2sinθcosθ and the Pythagorean identity sin^2θ + cos^2θ = 1.
sin2a = 2sinacos2a
1 + cos2a = 1 + cos^2a - sin^2a = 1 + cos^2a - 1−cos2a1 - cos^2a1−cos2a = 2cos^2a
Therefore, sin2a/1+cos2a1+cos2a1+cos2a = 2sinacos2a / 2cos^2a = sin2acos2a / cos^2a = sin2a/cos2a = tan2a
2) To simplify sina+2sin(pi/3−a)sina+2sin(pi/3-a)sina+2sin(pi/3−a)/2sin(pi/6−a)−cosa2sin(pi/6-a)-cosa2sin(pi/6−a)−cosa, we can convert the sine and cosine of π/3 and π/6 using trigonometric identities sinπ/3π/3π/3 = √3/2, sinπ/6π/6π/6 = 1/2, and cosπ/6π/6π/6 = √3/2.
sina+2sin(pi/3−a)sina+2sin(pi/3-a)sina+2sin(pi/3−a)/2sin(pi/6−a)−cosa2sin(pi/6-a)-cosa2sin(pi/6−a)−cosa = sina+2sin(π/3−a)sina+2sin(π/3-a)sina+2sin(π/3−a)/2sin(π/6−a)−cosa2sin(π/6-a)-cosa2sin(π/6−a)−cosa = sina+2√3/2cosasina + 2√3/2cosasina+2√3/2cosa/2(1/2)cosa−cosa2(1/2)cosa - cosa2(1/2)cosa−cosa = sina+√3cosasina + √3cosasina+√3cosa/cosa−cosacosa - cosacosa−cosa = sina+√3cosasina + √3cosasina+√3cosa/0
= Undefined
3) sina+cosasina+cosasina+cosa^2 + sina−cosasina-cosasina−cosa^2
= sin^2a + 2sina cosa + cos^2a + sin^2a - 2sina cosa + cos^2a
= 2sin2a+cos2asin^2a + cos^2asin2a+cos2a = 2111 = 2
4) 1−(sina+cosa)21 - (sina+cosa)^21−(sina+cosa)2/sina<em>cosa−ctgasina<em>cosa - ctgasina<em>cosa−ctga = 1−(sin2a+2sina</em>cosa+cos2a)1 - (sin^2a + 2sina </em> cosa + cos^2a)1−(sin2a+2sina</em>cosa+cos2a)/sina<em>cosa−ctgasina <em> cosa - ctgasina<em>cosa−ctga = 1−11 - 11−1/sina</em>cosa−ctgasina </em> cosa - ctgasina</em>cosa−ctga = 0/sina∗cosa−ctgasina * cosa - ctgasina∗cosa−ctga = 0
Therefore, the simplified forms of the given expressions are:
1) tan2a
2) Undefined
3) 2
4) 0