To simplify the expression, we can use the trigonometric identity:
sinααα - sinβββ = 2sin(α−β)/2(α-β)/2(α−β)/2cos(α+β)/2(α+β)/2(α+β)/2
cosααα - cosβββ = -2sin(α+β)/2(α+β)/2(α+β)/2sin(α−β)/2(α-β)/2(α−β)/2
So, the given expression becomes:
2sin(5π/18)cos(6π/18)2sin(5π/18)cos(6π/18)2sin(5π/18)cos(6π/18) / −2sin(6π/18)sin(5π/18)-2sin(6π/18)sin(5π/18)−2sin(6π/18)sin(5π/18) = 2sin(5π/18)cos(π/3)2sin(5π/18)cos(π/3)2sin(5π/18)cos(π/3) / −2sin(π/3)sin(5π/18)-2sin(π/3)sin(5π/18)−2sin(π/3)sin(5π/18) = 2sin(5π/18)<em>1/22sin(5π/18) <em> 1/22sin(5π/18)<em>1/2 / −√3/2</em>sin(5π/18)-√3/2 </em> sin(5π/18)−√3/2</em>sin(5π/18) = -1/√3
Therefore, sin(11π/18)−sin(π/18)sin (11π/18) - sin (π/18)sin(11π/18)−sin(π/18) / cos(11π/18)−cos(π/18)cos (11π/18) - cos (π/18)cos(11π/18)−cos(π/18) simplifies to -1/√3.
To simplify the expression, we can use the trigonometric identity:
sinααα - sinβββ = 2sin(α−β)/2(α-β)/2(α−β)/2cos(α+β)/2(α+β)/2(α+β)/2
cosααα - cosβββ = -2sin(α+β)/2(α+β)/2(α+β)/2sin(α−β)/2(α-β)/2(α−β)/2
So, the given expression becomes:
2sin(5π/18)cos(6π/18)2sin(5π/18)cos(6π/18)2sin(5π/18)cos(6π/18) / −2sin(6π/18)sin(5π/18)-2sin(6π/18)sin(5π/18)−2sin(6π/18)sin(5π/18) = 2sin(5π/18)cos(π/3)2sin(5π/18)cos(π/3)2sin(5π/18)cos(π/3) / −2sin(π/3)sin(5π/18)-2sin(π/3)sin(5π/18)−2sin(π/3)sin(5π/18) = 2sin(5π/18)<em>1/22sin(5π/18) <em> 1/22sin(5π/18)<em>1/2 / −√3/2</em>sin(5π/18)-√3/2 </em> sin(5π/18)−√3/2</em>sin(5π/18) = -1/√3
Therefore, sin(11π/18)−sin(π/18)sin (11π/18) - sin (π/18)sin(11π/18)−sin(π/18) / cos(11π/18)−cos(π/18)cos (11π/18) - cos (π/18)cos(11π/18)−cos(π/18) simplifies to -1/√3.