To simplify the given expression, we can start by applying the double angle formula for sine and cosine:
sin2x2x2x = 2sinxxxcosxxx cos2x2x2x = cos^2xxx - sin^2xxx = 1 - 2sin^2xxx
Now we can substitute these expressions into the given equation:
2sinxxxcosxxx + 22sin(x)cos(x)2sin(x)cos(x)2sin(x)cos(x) + 31−2sin2(x)1 - 2sin^2(x)1−2sin2(x) = 0
Rearranging terms, we get:
2sinxxxcosxxx + 4sinxxxcosxxx + 3 - 6sin^2xxx = 0
Combining like terms:
6sinxxxcosxxx - 6sin^2xxx + 3 = 0
Dividing the entire equation by 3:
2sinxxxcosxxx - 2sin^2xxx + 1 = 0
Using the double angle formula for sine once again:
2sinxxxcosxxx - sin^2xxx + cos^2xxx = 0
sin^2xxx + cos^2xxx = 1
Therefore, the simplified expression is:
1 = 1
So, the given equation simplifies to 1 = 1, which is always true.
To simplify the given expression, we can start by applying the double angle formula for sine and cosine:
sin2x2x2x = 2sinxxxcosxxx cos2x2x2x = cos^2xxx - sin^2xxx = 1 - 2sin^2xxx
Now we can substitute these expressions into the given equation:
2sinxxxcosxxx + 22sin(x)cos(x)2sin(x)cos(x)2sin(x)cos(x) + 31−2sin2(x)1 - 2sin^2(x)1−2sin2(x) = 0
Rearranging terms, we get:
2sinxxxcosxxx + 4sinxxxcosxxx + 3 - 6sin^2xxx = 0
Combining like terms:
6sinxxxcosxxx - 6sin^2xxx + 3 = 0
Dividing the entire equation by 3:
2sinxxxcosxxx - 2sin^2xxx + 1 = 0
Using the double angle formula for sine once again:
2sinxxxcosxxx - sin^2xxx + cos^2xxx = 0
sin^2xxx + cos^2xxx = 1
Therefore, the simplified expression is:
1 = 1
So, the given equation simplifies to 1 = 1, which is always true.