10 Мая 2019 в 19:49
123 +1
0
Ответы
1

To solve this system of equations, we can first rearrange the equations to isolate y in terms of x in both of them.

Equation 1: xy - 2y^2 = 43
yx−2yx - 2yx2y = 43
y = 43 / x−2yx - 2yx2y

Equation 2: xy - 3y^2 = -37
yx−3yx - 3yx3y = -37
y = -37 / x−3yx - 3yx3y

Now we can set the two expressions for y equal to each other:

43 / x−2yx - 2yx2y = -37 / x−3yx - 3yx3y

Cross-multiplying, we get:

43x−3yx - 3yx3y = -37x−2yx - 2yx2y 43x - 129y = -37x + 74y
80x = 203y
y = 80x / 203

Now we can substitute this expression for y back into either of the original equations to solve for x:

x80x/20380x / 20380x/203 - 280x/20380x / 20380x/203^2 = 43
80x2/20380x^2 / 20380x2/203 - 26400x2/20326400x^2 / 203^26400x2/2032 = 43
80x2/20380x^2 / 20380x2/203 - 128000x2/2032128000x^2 / 203^2128000x2/2032 = 43
20380x280x^280x2 - 128000x^2 = 432032203^22032 20380x2−12800080x^2 - 12800080x2128000 = 43412094120941209 16240x^2 - 25984000 = 1772427
16240x^2 = 27601427
x^2 = 1697
x = ±41

Therefore, the solutions to the system of equations are x = 41 and x = -41. Let's substitute these values back into one of the original equations to find the corresponding y values.

For x = 41:

y414141 - 2y^2 = 43
41y - 2y^2 = 43
2y^2 - 41y + 43 = 0
This equation has two solutions for y: y = 1 and y = 21

Therefore, when x = 41, the solutions are 41,141, 141,1 and 41,2141, 2141,21

For x = -41:

y−41-4141 - 2y^2 = 43
-41y - 2y^2 = 43
2y^2 + 41y - 43 = 0
This equation also has two solutions for y: y = -1 and y = -21

Therefore, when x = -41, the solutions are −41,−1-41, -141,1 and −41,−21-41, -2141,21

In conclusion, the solutions to the system of equations xy - 2y^2 = 43 and xy - 3y^2 = -37 are 41,141, 141,1, 41,2141, 2141,21, −41,−1-41, -141,1, and −41,−21-41, -2141,21

28 Мая 2024 в 16:33
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир