To solve the quadratic equation 2x^2 + 3x - 4 = 0, we can use the quadratic formula:
x = −b±√(b2−4ac)-b ± √(b^2 - 4ac)−b±√(b2−4ac) / 2a
In this case, a = 2, b = 3, and c = -4.
Plugging these values into the quadratic formula, we get:
x = −3±√(32−4<em>2</em>−4)-3 ± √(3^2 - 4<em>2</em>-4)−3±√(32−4<em>2</em>−4) / 2∗22*22∗2 x = −3±√(9+32)-3 ± √(9 + 32)−3±√(9+32) / 4x = −3±√41-3 ± √41−3±√41 / 4
So the solutions to the quadratic equation are:
x = −3+√41-3 + √41−3+√41 / 4 and x = −3−√41-3 - √41−3−√41 / 4.
To solve the quadratic equation 2x^2 + 3x - 4 = 0, we can use the quadratic formula:
x = −b±√(b2−4ac)-b ± √(b^2 - 4ac)−b±√(b2−4ac) / 2a
In this case, a = 2, b = 3, and c = -4.
Plugging these values into the quadratic formula, we get:
x = −3±√(32−4<em>2</em>−4)-3 ± √(3^2 - 4<em>2</em>-4)−3±√(32−4<em>2</em>−4) / 2∗22*22∗2 x = −3±√(9+32)-3 ± √(9 + 32)−3±√(9+32) / 4
x = −3±√41-3 ± √41−3±√41 / 4
So the solutions to the quadratic equation are:
x = −3+√41-3 + √41−3+√41 / 4 and x = −3−√41-3 - √41−3−√41 / 4.