Для упрощения выражения будем использовать свойства логарифмов:
log1/13 = log(1/13) = log1 - log13 = 0 - log13 = -log13
√13 = 13^(1/2)
5^3 = 125
log5 2^3 = 3log5 2
log16 = log(4^2) = 2log4 = 4
log6 36 = log6(6^2) = 2log6 6 = 2
log3 18 = log3(3^2 * 2) = 2 + log3 2
Теперь подставляем полученные значения:
-log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (4 + 2 + 2 + log3 2) + log4 13 log13 16= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (8 + log3 2) + 4 log13 16= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (8 + 2 + log3 2) + 4 log13 16= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (10 + log3 2) + 4 log13 16= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (10 + 2) + 4 log13 16= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / 12 + 4 log13 16
Для упрощения выражения будем использовать свойства логарифмов:
log1/13 = log(1/13) = log1 - log13 = 0 - log13 = -log13
√13 = 13^(1/2)
5^3 = 125
log5 2^3 = 3log5 2
log16 = log(4^2) = 2log4 = 4
log6 36 = log6(6^2) = 2log6 6 = 2
log3 18 = log3(3^2 * 2) = 2 + log3 2
Теперь подставляем полученные значения:
-log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (4 + 2 + 2 + log3 2) + log4 13 log13 16
= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (8 + log3 2) + 4 log13 16
= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (8 + 2 + log3 2) + 4 log13 16
= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (10 + log3 2) + 4 log13 16
= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / (10 + 2) + 4 log13 16
= -log13 13^(1/2) (125 + 3log5 2)^(2 + log5 2) / 12 + 4 log13 16