Решить неравенства: 1) 4-x^2 больше или равно 0. 2) (x-3)(x-7)<5(x-3)

10 Сен 2021 в 19:41
91 +1
1
Ответы
1

1) 4 - x^2 ≥ 0
Переносим x^2 на одну сторону
4 ≥ x^2
Извлекаем корень из обеих сторон
±2 ≥ x
Таким образом, решение неравенства: -2 ≤ x ≤ 2

2) x−3x-3x3x−7x-7x7 < 5x−3x-3x3 Раскрываем скобки
x^2 - 10x + 21 < 5x - 15
Переносим все на одну сторону
x^2 - 15x + 36 < 0
Факторизуем
x−12x-12x12x−3x-3x3 < 0
Найдем точку пересечения x=12,x=3x=12, x=3x=12,x=3 Проверяем интервалы:
3<x<12 - правильно удовлетворяет неравенству
Решение данного неравенства: 3 < x < 12

17 Апр 2024 в 11:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир