11 Сен 2021 в 19:44
71 +1
0
Ответы
1

To solve the equation -5sin2x2x2x - 16sin(x)−cos(x)sin(x) - cos(x)sin(x)cos(x) + 8 = 0, we can use trigonometric identities to simplify it.

Let's start by expanding -5sin2x2x2x using the double-angle identity: sin2x2x2x = 2sinxxxcosxxx.

-5sin2x2x2x = -52sin(x)cos(x)2sin(x)cos(x)2sin(x)cos(x) = -10sinxxxcosxxx

Next, expand -16sin(x)−cos(x)sin(x) - cos(x)sin(x)cos(x):

-16sinxxx + 16cosxxx

Substitute these simplified expressions back into the original equation:

-10sinxxxcosxxx - 16sinxxx + 16cosxxx + 8 = 0

Now, we can rearrange the terms and factor out common factors:

-2sinxxx5cos(x)+85cos(x) + 85cos(x)+8 + 16cos(x)+5cos(x) + 5cos(x)+5 = 0

Now, we have factored the original equation. To solve for x, we need to set each factor to zero:

-2sinxxx = 0 or 5cosxxx + 8 = 0
sinxxx = 0 cosxxx = -8/5

The solutions for sinxxx= 0 are x = 0, π

The solutions for cosxxx = -8/5 are no real solutions, as the cosine values are limited to −1,1-1,11,1

Therefore, the solutions for the original equation are x = 0, π.

17 Апр 2024 в 11:43
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир