Правильный треугольник ABC вписан в окружность с центром O, OB=корень из 3/6. Найдите сторону треугольника

5 Окт 2021 в 19:44
69 +1
0
Ответы
1

Поскольку треугольник ABC является равносторонним, то все его стороны равны между собой. Обозначим длину стороны треугольника как "a".

Так как треугольник ABC вписан в окружность с центром O, то центр окружности будет в центре треугольника, а также середины всех его сторон. Значит, от центра окружности O до любой точки на стороне треугольника равно a/2.

Также, мы знаем, что OB = √3/6. Это расстояние равно половине длины стороны треугольника a/2.

Т.е. OB = a/2 = √3/6

Умножим обе стороны на 2:

a = √3/3

Таким образом, сторона треугольника ABC равна √3/3.

17 Апр 2024 в 10:28
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир