7 Окт 2021 в 19:46
59 +1
0
Ответы
1

To solve the expression 2arcsin(-1/2) - 3arccos(√3/2), we first need to find the values of arcsin(-1/2) and arccos(√3/2).

arcsin(-1/2) is the angle whose sine is -1/2. The reference angle for this is π/6 (30 degrees) in the second quadrant. Since sine is negative in the third and fourth quadrants, the angle in which sine is -1/2 is 7π/6 (210 degrees).

arccos(√3/2) is the angle whose cosine is √3/2. The reference angle for this is π/6 (30 degrees) in the first quadrant. Therefore, the angle in which cosine is √3/2 is π/6 (30 degrees).

Now, we can substitute these values into the expression:

2(7π/6) - 3(π/6)
= 14π/6 - 3π/6
= 11π/6

Therefore, the solution to the expression 2arcsin(-1/2) - 3arccos(√3/2) is 11π/6.

17 Апр 2024 в 10:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир