16 Мая 2019 в 19:51
193 +1
2
Ответы
1

To solve this second-order differential equation, we can first find the characteristic equation by substituting y = e^(rt) into the equation:

Y'' = r^2e^(rt)
y' = re^(rt)

Therefore, the equation becomes:

r^2e^(rt) - re^(rt) - 6e^(rt) = 0
(e^(rt))(r^2 - r - 6) = 0

The characteristic equation is then:

r^2 - r - 6 = 0

Now, we can solve this quadratic equation for r by factoring or by using the quadratic formula:

r^2 - r - 6 = 0
(r - 3)(r + 2) = 0

This gives us two roots: r1 = 3 and r2 = -2

Therefore, the general solution to the differential equation is:

y(t) = C1e^(3t) + C2e^(-2t)

where C1 and C2 are arbitrary constants that can be determined from initial conditions if they are provided.

28 Мая 2024 в 16:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир