23 Окт 2021 в 19:42
37 +1
1
Ответы
1

Для начала приведем данное уравнение к общему виду, чтобы лучше его рассмотреть:

2cosx + 1/tgx - √3 = 0

Для начала заменим тангенс x на синус и косинус x, т.е. tgx = sinx/cosx:

2cosx + 1/(sinx/cosx) - √3 = 0
2cosx + cosx/sinx - √3 = 0

Теперь умножим каждое слагаемое на sinx, чтобы избавиться от знаменателя:

2cosxsinx + cosx - √3sinx = 0
2sinxcosx + cosx - √3sinx = 0

Теперь можно вынести cosx и sinx за скобку:

sinx(2cosx - √3) + cosx = 0

Теперь раскроем скобку и преобразуем уравнение:

2cos^2(x) - √3sinx + cosx = 0
2(1 - sin^2(x)) - √3sinx + cosx = 0
2 - 2sin^2(x) - √3sinx + cosx = 0

Данный вид уравнения уже не может быть решен аналитически, т.к. содержит квадрат синуса и синус. Для получения численного решения потребуется использовать численные методы или графический метод.

17 Апр 2024 в 09:34
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир