30 Окт 2021 в 19:40
184 +1
1
Ответы
1
To solve the equation sin(x-π/4) = 1, we first need to find the general solution for sin(x) = 1. This occurs when x = π/2 + 2πn, where n is an integer.

Now, we need to find when x-π/4 = π/2 + 2πn. Adding π/4 to both sides gives us x = π/2 + π/4 + 2πn, which simplifies to x = 3π/4 + 2πn.

Therefore, the solution to the equation sin(x-π/4) = 1 is x = 3π/4 + 2πn, where n is an integer.

To solve the equation 2cos^2(x) - 5cos(x) + 2 = 0, we first need to factor it.

The equation can be factored into (2cos(x) - 1)(cos(x) - 2) = 0.

Setting each factor to zero gives us:

2cos(x) - 1 = 0
cos(x) - 2 = 0

Solving the first equation, we get cos(x) = 1/2. This occurs when x = π/3 + 2πn or x = 5π/3 + 2πn, where n is an integer.

Solving the second equation, we get cos(x) = 2, which has no real solutions.

Therefore, the solutions to the equation 2cos^2(x) - 5cos(x) + 2 = 0 are x = π/3 + 2πn and x = 5π/3 + 2πn, where n is an integer.

17 Апр 2024 в 09:18
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир