To find the value of "a" in the equation 4x² - 25x + 36 = 4x−4x - 4x−4x−ax - ax−a, we need to expand the right side of the equation and then compare it to the left side.
Expanding the right side:4x−4x - 4x−4x−ax - ax−a = 4x2−ax−4x+4ax² - ax - 4x + 4ax2−ax−4x+4a = 4x2−(a+4)x+4ax² - (a+4)x + 4ax2−(a+4)x+4a = 4x² - 4a+4a+4a+4x + 16a
Now we can compare this to the original equation:4x² - 25x + 36
Equating the coefficients of x²:4 = 4
Equating the coefficients of x:-4a+4a+4a+4 = -25-4a - 16 = -25-4a = -9a = 9/4
Therefore, the value of "a" in the equation 4x² - 25x + 36 = 4x−4x - 4x−4x−ax - ax−a is a = 9/4.
To find the value of "a" in the equation 4x² - 25x + 36 = 4x−4x - 4x−4x−ax - ax−a, we need to expand the right side of the equation and then compare it to the left side.
Expanding the right side:
4x−4x - 4x−4x−ax - ax−a = 4x2−ax−4x+4ax² - ax - 4x + 4ax2−ax−4x+4a = 4x2−(a+4)x+4ax² - (a+4)x + 4ax2−(a+4)x+4a = 4x² - 4a+4a+4a+4x + 16a
Now we can compare this to the original equation:
4x² - 25x + 36
Equating the coefficients of x²:
4 = 4
Equating the coefficients of x:
-4a+4a+4a+4 = -25
-4a - 16 = -25
-4a = -9
a = 9/4
Therefore, the value of "a" in the equation 4x² - 25x + 36 = 4x−4x - 4x−4x−ax - ax−a is a = 9/4.