12 Ноя 2021 в 19:41
79 +1
0
Ответы
1

Для нахождения корней уравнения 10x^2 + x - 24 = 0 воспользуемся формулой для нахождения корней квадратного уравнения: x = (-b ± √(b^2 - 4ac)) / 2a.

Здесь a = 10, b = 1 и c = -24.

Подставляем эти значения в формулу:

x = (-1 ± √(1^2 - 410(-24))) / (2*10)

x = (-1 ± √(1 + 960)) / 20

x = (-1 ± √961) / 20

x = (-1 ± 31) / 20

Теперь находим два корня:

x₁ = (-1 + 31) / 20 = 30 / 20 = 3/2 = 1.5

x₂ = (-1 - 31) / 20 = -32 / 20 = -1.6

Корни уравнения 10x^2 + x - 24 = 0 равны 1.5 и -1.6.

17 Апр 2024 в 08:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир