First, let's simplify the expression step by step.
Expanding the first part: 1+i1+i1+i1−2i1-2i1−2i = 1111 + 1−2i-2i−2i + i111 + i−2i-2i−2i = 1 - 2i + i - 2i^2= 1 - 2i + i + 2= 3 - i
Expanding the second part: 1+i1+i1+i1+2i1+2i1+2i = 1111 + 12i2i2i + i111 + i2i2i2i = 1 + 2i + i + 2i^2= 1 + 2i + i - 2= -1 + 3i
Now, we substitute these results back into the original expression:
3−i+(−1+3i)3 - i + (-1 + 3i)3−i+(−1+3i) / 1+2i1+2i1+2i^2 - 1−2i1-2i1−2i
= 2+2i2 + 2i2+2i / 1+2i1+2i1+2i^2 - 1−2i1-2i1−2i
To simplify further, we need to square the denominator 1+2i1+2i1+2i^2:
1+2i1+2i1+2i^2 = 1+2i1+2i1+2i1+2i1+2i1+2i = 11 + 12i + 2i1 + 2i2i= 1 + 2i + 2i + 4i^2= 1 + 4i + 4i - 4= -3 + 8i
Now substitute back:
2+2i2 + 2i2+2i / −3+8i-3 + 8i−3+8i - 1−2i1-2i1−2i
Now, let's simplify this expression further if needed.
First, let's simplify the expression step by step.
Expanding the first part: 1+i1+i1+i1−2i1-2i1−2i = 1111 + 1−2i-2i−2i + i111 + i−2i-2i−2i = 1 - 2i + i - 2i^2
= 1 - 2i + i + 2
= 3 - i
Expanding the second part: 1+i1+i1+i1+2i1+2i1+2i = 1111 + 12i2i2i + i111 + i2i2i2i = 1 + 2i + i + 2i^2
= 1 + 2i + i - 2
= -1 + 3i
Now, we substitute these results back into the original expression:
3−i+(−1+3i)3 - i + (-1 + 3i)3−i+(−1+3i) / 1+2i1+2i1+2i^2 - 1−2i1-2i1−2i
= 2+2i2 + 2i2+2i / 1+2i1+2i1+2i^2 - 1−2i1-2i1−2i
To simplify further, we need to square the denominator 1+2i1+2i1+2i^2:
1+2i1+2i1+2i^2 = 1+2i1+2i1+2i1+2i1+2i1+2i = 11 + 12i + 2i1 + 2i2i
= 1 + 2i + 2i + 4i^2
= 1 + 4i + 4i - 4
= -3 + 8i
Now substitute back:
2+2i2 + 2i2+2i / −3+8i-3 + 8i−3+8i - 1−2i1-2i1−2i
Now, let's simplify this expression further if needed.