19 Ноя 2021 в 19:43
80 +1
0
Ответы
1

To solve this equation, we need to simplify the logarithms first.

Given:
lgx+6x+6x+6 - 0.5lg2x−32x-32x3 = 2 - lg252525

Apply the properties of logarithms:
lgx+6x+6x+6 - lg(2x−3)0.5(2x-3)^0.5(2x3)0.5 = 2 - lg25
lgx+6x+6x+6 - lg√2x−32x-32x3 = 2 - lg25

Now, use the property that lg√a = 0.5lgaaa:
lgx+6x+6x+6 - 0.5lg2x−32x-32x3 = 2 - lg25

Now, we can rewrite the equation without any square roots:
lgx+6x + 6x+6 - 0.5lg2x−32x - 32x3 = 2 - lg252525

Next, we can apply the properties of logarithms to simplify the equation further. We will combine the logarithms:
lg(x+6)/(√(2x−3))(x + 6)/(√(2x - 3))(x+6)/((2x3)) = 2 - lg252525

Next, we can rewrite the right side in terms of lg252525:
lg(x+6)/(√(2x−3))(x + 6)/(√(2x - 3))(x+6)/((2x3)) = lg100100100 - lg252525

Now, we can simplify the right side to get a single logarithm:
lg(x+6)/(√(2x−3))(x + 6)/(√(2x - 3))(x+6)/((2x3)) = lg444

At this point, we have a single logarithm on each side. We can set the arguments of the logarithms equal to each other:
x+6x + 6x+6/√(2x−3)√(2x - 3)(2x3) = 4

Now, we can solve for x by cross multiplying:
4√(2x−3)√(2x - 3)(2x3) = x + 6

Next, we will square both sides of the equation to get rid of the square root:
162x−32x - 32x3 = x+6x + 6x+6^2

Expand and simplify the equation:
32x - 48 = x^2 + 12x + 36

Rearrange the equation to set it equal to zero:
x^2 - 20x - 84 = 0

Now, we have a quadratic equation that we can solve using factoring, the quadratic formula, or other methods to find the values of x. Once we find the values of x, we can substitute them back into the original equation to check for extraneous solutions and verify the solution.

17 Апр 2024 в 08:37
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир