27 Ноя 2021 в 19:42
46 +1
0
Ответы
1

To solve the equation 9x - 7/(3x - 2) - 7x - 5/(2x - 3) - 1 = 0, we first need to simplify the expression by finding a common denominator for the fractions.

The common denominator for 3x - 2 and 2x - 3 is (3x - 2)(2x - 3).

Now we rewrite the equation with the common denominator:

9x(2x - 3) - 7(2x - 3)/(3x - 2)(2x - 3) - 7x(3x - 2) - 5/(3x - 2)(2x - 3) - 1 = 0

Expanding the equation further:

18x^2 - 27x - 14x + 21)/(3x - 2)(2x - 3) - 21x^2 + 14 - 5/(3x - 2)(2x - 3) - 1 = 0

Combining like terms, we get:

18x^2 - 41x + 35)/(3x - 2)(2x - 3) - 21x^2 + 9/(3x - 2)(2x - 3) - 1 = 0

Now we have a single fraction. We can combine it to simplify the equation:

(18x^2 - 41x + 35 - 63x^2 + 27)/(3x - 2)(2x - 3) - 1 = 0

Simplifying further, we get:

(-45x^2 - 14x + 62)/(3x - 2)(2x - 3) - 1 = 0

To solve for x, we need to set the equation equal to zero and solve for x:

(-45x^2 - 14x + 62)/(3x - 2)(2x - 3) = 1

(-45x^2 - 14x + 62)/(3x - 2)(2x - 3) = 1

-45x^2 - 14x + 62 = (3x - 2)(2x - 3)

Multiplying out the right side gives us:

-45x^2 - 14x + 62 = 6x^2 - 13x - 6

Subtract 6x^2 - 13x - 6 from both sides to set the equation equal to zero:

-51x^2 + 47x + 68 = 0

However, the quadratic equation -51x^2 + 47x + 68 = 0 cannot be factored easily, so you would need to use the quadratic formula to find the roots.

17 Апр 2024 в 08:26
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир