28 Ноя 2021 в 19:44
52 +1
0
Ответы
1

To solve this inequality, we first need to rewrite it in a different form.

Using properties of logarithms, we can rewrite the inequality as:
log3,((x+1)/(x−1))3, ((x+1)/(x-1))3,((x+1)/(x1))^1/21/21/2 ≥ 0

Now, we can remove the logarithm by raising 3 to the power of both sides:
(x+1)/(x−1)(x+1)/(x-1)(x+1)/(x1)^1/21/21/2 ≥ 1

Square both sides to simplify:
x+1x+1x+1/x−1x-1x1 ≥ 1

Now we can further simplify by multiplying both sides by x−1x-1x1:
x+1 ≥ x-1

Subtract x from both sides:
1 ≥ -1

This inequality is always true, meaning that the original inequality is also true for all real numbers x. Thus, the solution is:
x belongs to R allrealnumbersall real numbersallrealnumbers

17 Апр 2024 в 08:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир