4 Дек 2021 в 19:42
60 +1
1
Ответы
1

To solve this trigonometric equation, we can use the double angle and difference of angles identities.

First, let's expand the terms using the double angle identity:

sin2x2x2x = 2sinxxxcosxxx

Now, we can rewrite the equation as:

42sin(x)cos(x)2sin(x)cos(x)2sin(x)cos(x) - 3sin(2x)cos(π/3)−cos(2x)sin(π/3)sin(2x)cos(π/3) - cos(2x)sin(π/3)sin(2x)cos(π/3)cos(2x)sin(π/3) = 5

Simplify further:

8sinxxxcosxxx - 3sin(2x)cos(π/3)−cos(2x)sin(π/3)sin(2x)cos(π/3) - cos(2x)sin(π/3)sin(2x)cos(π/3)cos(2x)sin(π/3) = 5

Now, we will use the sum and difference of angles identities to find expressions for sin2x2x2x and cos2x2x2x:

sin2x2x2x = 2sinxxxcosxxx cos2x2x2x = cos^2xxx - sin^2xxx

Substitute these expressions into the equation:

8sinxxxcosxxx - 32sin(x)cos(x)cos(π/3)−(cos2(x)−sin2(x))sin(π/3)2sin(x)cos(x)cos(π/3) - (cos^2(x) - sin^2(x))sin(π/3)2sin(x)cos(x)cos(π/3)(cos2(x)sin2(x))sin(π/3) = 5

Now, simplify and solve for x. This will involve using trigonometric identities and manipulating the terms in the equation.

17 Апр 2024 в 08:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир