Задача по геометрии. Сторона квадрата ABCD равна 3.Отрезок AM перпендекулярен плоскости квадрата,уголABM=60градусов.Найдите расстояние от точки M до прямой BD.

24 Ноя 2022 в 19:40
74 +1
0
Ответы
1

Пусть точка M(x, y), тогда AM = √(x² + y²).

Точка B(0, 3), точка D(3, 0).
Прямая BD задается уравнением y = -x + 3.

Точка A(0,0).
Угол ABM = 60 градусов, следовательно, прямая AM делит угол BAD на 2 равные части.

Так как AM перпендикулярна плоскости квадрата, то коэффициент наклона прямой AM равен tan(60) = √3.
Уравнение прямой AM через точку M(x, y) и c коэффициентом наклона √3 имеет вид y = √3x.

Точка M ходит по прямой AM, при этом точка M располагается таким образом, чтобы расстояние от AM до BD было минимальным.
Известно, что кратчайшее расстояние между прямыми задается формулой:

d = |Ax1 + By1 + C| / √(A² + B²),

где A, B, C - коэффициенты уравнения прямой, x1, y1 - координаты точки, через которую проведена перпендикуляр к искомой прямой.

Подставляем координаты точки M в формулу и находим расстояние d:

d = |1√3 + (-1)y + 3| / √(1² + (-1)²) =>
d = |√3 - y + 3| / √2.

Теперь найдем координаты точки M. Составим систему уравнений, учитывая уравнение прямой AM:
y = √3x, равенство расстояний от М до А и до В (так как М должна находиться на биссектрисе угла):
√x² + y² = x² + (x-3)² =>
x² + 3x + 3 = 0 =>
D = 3² - 4*3 = -3 => корней нет.
Следовательно, точка М находится ближе к А, чем к В.

Таким образом, расстояние от точки М до прямой BD равно |√3 - y + 3| / √2.

16 Апр 2024 в 17:06
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир