Найти площадь треугольника MNK, если MN=15√5,MK=16, ∆M=60°

29 Дек 2022 в 19:41
301 +1
0
Ответы
1

Дано: MN = 15√5, MK = 16, ∠M = 60°

Площадь треугольника можно найти по формуле: S = 0.5 a b * sin(C), где a и b - стороны треугольника, C - угол между этими сторонами.

Мы знаем стороны MN и MK, а также угол М. Таким образом, у нас есть все данные, чтобы найти площадь.

Сначала найдем сторону NK, используя косинусную теорему:
MK^2 = MN^2 + NK^2 - 2 MN NK cos(∠M)
16^2 = (15√5)^2 + NK^2 - 2 15√5 NK cos(60°)
256 = 2255 + NK^2 -2 15√5 NK 0.5
256 = 1125 + NK^2 - 15√5 NK
NK^2 - 15√5 NK - 131 = 0

Решая квадратное уравнение, получим, что NK = 5√5 или NK = -26√5. Так как длина стороны не может быть отрицательной, то выбираем NK = 5√5.

Теперь можем найти площадь треугольника:
S = 0.5 MN NK sin(∠M)
S = 0.5 15√5 5√5 sin(60°)
S = 0.5 75 sin(60°)
S = 0.5 75 √3/2
S = 37.5 * √3

Итак, площадь треугольника MNK равна 37.5√3.

16 Апр 2024 в 16:54
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир