Для начала заменим cos^4xxx и cos^5xxx через cos^3xxx:
cos^4xxx = cos2(x)cos^2(x)cos2(x)^2 = 1−sin2(x)1 - sin^2(x)1−sin2(x)^2 = 1 - 2sin^2xxx + sin^4xxx == 1 - 21−cos2(x)1 - cos^2(x)1−cos2(x) + 1−cos2(x)1 - cos^2(x)1−cos2(x)^2 = 1 - 2 + 2cos^2xxx - cos^4xxx,cos^4xxx = 2cos2(x)−1+cos4(x)2cos^2(x) - 1 + cos^4(x)2cos2(x)−1+cos4(x)/2,
cos^5xxx = cosxxx cos^4xxx = cosxxx 2cos2(x)−1+cos4(x)2cos^2(x) - 1 + cos^4(x)2cos2(x)−1+cos4(x)/2 == 2cos3(x)−cos(x)+cos(x)cos4(x)2cos^3(x) - cos(x) + cos(x)cos^4(x)2cos3(x)−cos(x)+cos(x)cos4(x)/2 == 2cos3(x)−cos(x)+cos5(x)2cos^3(x) - cos(x) + cos^5(x)2cos3(x)−cos(x)+cos5(x)/2,cos^5xxx = 2cos3(x)−cos(x)2cos^3(x) - cos(x)2cos3(x)−cos(x)/2 + cos5(x)cos^5(x)cos5(x)/2.
Подставим замены в начальное выражение:
∛((2cos3(x)−cos(x))/2)−∛((2cos3(x)−cos(x))/2+cos5(x)/2)∛((2cos^3(x) - cos(x))/2) - ∛((2cos^3(x) - cos(x))/2 + cos^5(x)/2)∛((2cos3(x)−cos(x))/2)−∛((2cos3(x)−cos(x))/2+cos5(x)/2) / 1−cos3(x)1 - cos^3(x)1−cos3(x) =(2cos3(x)−cos(x))/2(2cos^3(x) - cos(x))/2(2cos3(x)−cos(x))/2^1/31/31/3 - (2cos3(x)−cos(x))/2+cos5(x)/2(2cos^3(x) - cos(x))/2 + cos^5(x)/2(2cos3(x)−cos(x))/2+cos5(x)/2^1/31/31/3 / 1−cos3(x)1 - cos^3(x)1−cos3(x).
Теперь можем упростить дальше:
(2cos3(x)−cos(x))/2(2cos^3(x) - cos(x))/2(2cos3(x)−cos(x))/2^1/31/31/3 = cos3(x)−1/2cos^3(x) - 1/2cos3(x)−1/2/2^1/31/31/3,(2cos3(x)−cos(x))/2+cos5(x)/2(2cos^3(x) - cos(x))/2 + cos^5(x)/2(2cos3(x)−cos(x))/2+cos5(x)/2^1/31/31/3 = cos3(x)−1/2+cos5(x)cos^3(x) - 1/2 + cos^5(x)cos3(x)−1/2+cos5(x)/2^1/31/31/3.
Итого, выражение упрощается до (cos3(x)−1/2)/2(1/3)−(cos3(x)−1/2+cos5(x))/2(1/3)(cos^3(x) - 1/2)/2^(1/3) - (cos^3(x) - 1/2 + cos^5(x))/2^(1/3)(cos3(x)−1/2)/2(1/3)−(cos3(x)−1/2+cos5(x))/2(1/3) / 1−cos3(x)1 - cos^3(x)1−cos3(x).
Для начала заменим cos^4xxx и cos^5xxx через cos^3xxx:
cos^4xxx = cos2(x)cos^2(x)cos2(x)^2 = 1−sin2(x)1 - sin^2(x)1−sin2(x)^2 = 1 - 2sin^2xxx + sin^4xxx =
= 1 - 21−cos2(x)1 - cos^2(x)1−cos2(x) + 1−cos2(x)1 - cos^2(x)1−cos2(x)^2 = 1 - 2 + 2cos^2xxx - cos^4xxx,
cos^4xxx = 2cos2(x)−1+cos4(x)2cos^2(x) - 1 + cos^4(x)2cos2(x)−1+cos4(x)/2,
cos^5xxx = cosxxx cos^4xxx = cosxxx 2cos2(x)−1+cos4(x)2cos^2(x) - 1 + cos^4(x)2cos2(x)−1+cos4(x)/2 =
= 2cos3(x)−cos(x)+cos(x)cos4(x)2cos^3(x) - cos(x) + cos(x)cos^4(x)2cos3(x)−cos(x)+cos(x)cos4(x)/2 =
= 2cos3(x)−cos(x)+cos5(x)2cos^3(x) - cos(x) + cos^5(x)2cos3(x)−cos(x)+cos5(x)/2,
cos^5xxx = 2cos3(x)−cos(x)2cos^3(x) - cos(x)2cos3(x)−cos(x)/2 + cos5(x)cos^5(x)cos5(x)/2.
Подставим замены в начальное выражение:
∛((2cos3(x)−cos(x))/2)−∛((2cos3(x)−cos(x))/2+cos5(x)/2)∛((2cos^3(x) - cos(x))/2) - ∛((2cos^3(x) - cos(x))/2 + cos^5(x)/2)∛((2cos3(x)−cos(x))/2)−∛((2cos3(x)−cos(x))/2+cos5(x)/2) / 1−cos3(x)1 - cos^3(x)1−cos3(x) =
(2cos3(x)−cos(x))/2(2cos^3(x) - cos(x))/2(2cos3(x)−cos(x))/2^1/31/31/3 - (2cos3(x)−cos(x))/2+cos5(x)/2(2cos^3(x) - cos(x))/2 + cos^5(x)/2(2cos3(x)−cos(x))/2+cos5(x)/2^1/31/31/3 / 1−cos3(x)1 - cos^3(x)1−cos3(x).
Теперь можем упростить дальше:
(2cos3(x)−cos(x))/2(2cos^3(x) - cos(x))/2(2cos3(x)−cos(x))/2^1/31/31/3 = cos3(x)−1/2cos^3(x) - 1/2cos3(x)−1/2/2^1/31/31/3,
(2cos3(x)−cos(x))/2+cos5(x)/2(2cos^3(x) - cos(x))/2 + cos^5(x)/2(2cos3(x)−cos(x))/2+cos5(x)/2^1/31/31/3 = cos3(x)−1/2+cos5(x)cos^3(x) - 1/2 + cos^5(x)cos3(x)−1/2+cos5(x)/2^1/31/31/3.
Итого, выражение упрощается до (cos3(x)−1/2)/2(1/3)−(cos3(x)−1/2+cos5(x))/2(1/3)(cos^3(x) - 1/2)/2^(1/3) - (cos^3(x) - 1/2 + cos^5(x))/2^(1/3)(cos3(x)−1/2)/2(1/3)−(cos3(x)−1/2+cos5(x))/2(1/3) / 1−cos3(x)1 - cos^3(x)1−cos3(x).