16 Июн 2023 в 19:40
38 +1
0
Ответы
1

Для решения этой задачи используем тригонометрическую тождественность: cos^2(α) + sin^2(α) = 1.

У нас уже дано значение sin(α) = 4/7. Подставляем это значение в тождество:

cos^2(α) + (4/7)^2 = 1
cos^2(α) + 16/49 = 1
cos^2(α) = 1 - 16/49
cos^2(α) = 33/49

Теперь находим значение cos(α):
cos(α) = ±√(33/49)
cos(α) = ±√(33)/√(49)
cos(α) = ±√(33)/7

Так как α находится в первой четверти (0<α<π/2), то cos(α) будет положительным:

cos(α) = √(33)/7

Итак, cos(α) = √(33)/7.

16 Апр 2024 в 16:10
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир