Математика огэ 22 задание Постройте график функции y = |x^2 + x - 2| - 2.

23 Дек 2023 в 19:40
51 +1
0
Ответы
1

Для построения графика функции y = |x^2 + x - 2| - 2 нам необходимо выделить точки перегиба и экстремумы функции.

Найдем точки перегиба. Для этого найдем производную функции y = |x^2 + x - 2| - 2:

y' = (x^2 + x - 2)/(x^2 + x - 2) + x

Приравниваем производную к нулю:

(x^2 + x - 2)/(x^2 + x - 2) + x = 0
x = -1

Точка перегиба находится в точке x = -1.

Найдем экстремумы функции. Для этого найдем значения функции в критических точках и на концах отрезка:

y(-1) = |-1^2 - 1 - 2| - 2 = 2 - 2 = 0

Построим график функции y = |x^2 + x - 2| - 2:

На графике видно, что функция имеет минимум в точке x = -1 и равен 0. График функции выглядит как парабола с вершиной в точке (-1, 0) и направлен вверх.

16 Апр 2024 в 15:42
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир