y' = (x4+6)′∗(3x+5)−(x4+6)∗(3x+5)′(x^4+6)' * (3x+5) - (x^4+6) * (3x+5)'(x4+6)′∗(3x+5)−(x4+6)∗(3x+5)′/3x+53x+53x+5^2 = 4x3∗(3x+5)−(x4+6)∗34x^3 * (3x+5) - (x^4+6) * 34x3∗(3x+5)−(x4+6)∗3/3x+53x+53x+5^2 =
= 12x4+20x3−3x4−1812x^4 + 20x^3 - 3x^4 - 1812x4+20x3−3x4−18/3x+53x+53x+5^2 = 9x4+20x3−189x^4 + 20x^3 - 189x4+20x3−18/3x+53x+53x+5^2
y' = (x4+6)′∗(3x+5)−(x4+6)∗(3x+5)′(x^4+6)' * (3x+5) - (x^4+6) * (3x+5)'(x4+6)′∗(3x+5)−(x4+6)∗(3x+5)′/3x+53x+53x+5^2 = 4x3∗(3x+5)−(x4+6)∗34x^3 * (3x+5) - (x^4+6) * 34x3∗(3x+5)−(x4+6)∗3/3x+53x+53x+5^2 =
= 12x4+20x3−3x4−1812x^4 + 20x^3 - 3x^4 - 1812x4+20x3−3x4−18/3x+53x+53x+5^2 = 9x4+20x3−189x^4 + 20x^3 - 189x4+20x3−18/3x+53x+53x+5^2