Геометрия, теорема Пифагора, катет/гипотенуза в корне Итак, у меня есть прямоугольный треугольник. Гипотенуза 3√3, а первый катет равен 2. Могу ли я избавиться от корня гипотенузы(по теореме Пифагора там же сумма квадратов), возведя это число в квадрат. Таким образом, у меня должно получиться следующее выражение: (3√3)² - 2² = х (3√3)² = 27 27 - 4 = 23 Получается ответ 23? Если это решается как-то по-другому, объясните как, просто я не понимаю.
Да, вы правильно применили теорему Пифагора для нахождения второго катета в прямоугольном треугольнике. Давайте пройдемся по шагам, чтобы убедиться, что все правильно.
По теореме Пифагора: [ c^2 = a^2 + b^2 ] где ( c ) — гипотенуза, ( a ) и ( b ) — катеты.
В вашем случае:
Гипотенуза ( c = 3\sqrt{3} )Первый катет ( a = 2 )Второй катет ( b = ? )
Вы хотите найти второй катет ( b ), используя теорему Пифагора: [ (3\sqrt{3})^2 = 2^2 + b^2 ]
Теперь подставим эти значения в уравнение: [ 27 = 4 + b^2 ]
Теперь вычтем 4 из обеих сторон: [ b^2 = 27 - 4 ] [ b^2 = 23 ]
Теперь извлечем квадратный корень, чтобы найти ( b ): [ b = \sqrt{23} ]
Таким образом, второй катет равен ( \sqrt{23} ).
Ваше решение верное, и вы правильно пришли к ответу, что квадрат второго катета равен 23. Просто в конце не забудьте извлечь корень, если вам нужно найти длину катета.
Да, вы правильно применили теорему Пифагора для нахождения второго катета в прямоугольном треугольнике. Давайте пройдемся по шагам, чтобы убедиться, что все правильно.
По теореме Пифагора:
[ c^2 = a^2 + b^2 ]
где ( c ) — гипотенуза, ( a ) и ( b ) — катеты.
В вашем случае:
Гипотенуза ( c = 3\sqrt{3} )Первый катет ( a = 2 )Второй катет ( b = ? )Вы хотите найти второй катет ( b ), используя теорему Пифагора:
[ (3\sqrt{3})^2 = 2^2 + b^2 ]
Сначала вычислим ( (3\sqrt{3})^2 ):
[ (3\sqrt{3})^2 = 3^2 \cdot (\sqrt{3})^2 = 9 \cdot 3 = 27 ]
Теперь найдём ( 2^2 ):
[ 2^2 = 4 ]
Теперь подставим эти значения в уравнение:
[ 27 = 4 + b^2 ]
Теперь вычтем 4 из обеих сторон:
[ b^2 = 27 - 4 ]
[ b^2 = 23 ]
Теперь извлечем квадратный корень, чтобы найти ( b ):
[ b = \sqrt{23} ]
Таким образом, второй катет равен ( \sqrt{23} ).
Ваше решение верное, и вы правильно пришли к ответу, что квадрат второго катета равен 23. Просто в конце не забудьте извлечь корень, если вам нужно найти длину катета.