Для упрощения выражения ( 2a(3a-5)-(a-3)(a-7) ) выполним следующие шаги:
Раскроем скобки в первом компоненте:[2a(3a-5) = 6a^2 - 10a]
Раскроем скобки во втором компоненте:[(a-3)(a-7) = a^2 - 7a - 3a + 21 = a^2 - 10a + 21]
Теперь подставим результаты в исходное выражение:[6a^2 - 10a - (a^2 - 10a + 21)]
Упростим выражение, учитывая знак перед скобками:[6a^2 - 10a - a^2 + 10a - 21]
Соберем подобные члены:[(6a^2 - a^2) + (-10a + 10a) - 21 = 5a^2 - 21]
Таким образом, упрощенное выражение:[\boxed{5a^2 - 21}]
Для упрощения выражения ( 2a(3a-5)-(a-3)(a-7) ) выполним следующие шаги:
Раскроем скобки в первом компоненте:
[
2a(3a-5) = 6a^2 - 10a
]
Раскроем скобки во втором компоненте:
[
(a-3)(a-7) = a^2 - 7a - 3a + 21 = a^2 - 10a + 21
]
Теперь подставим результаты в исходное выражение:
[
6a^2 - 10a - (a^2 - 10a + 21)
]
Упростим выражение, учитывая знак перед скобками:
[
6a^2 - 10a - a^2 + 10a - 21
]
Соберем подобные члены:
[
(6a^2 - a^2) + (-10a + 10a) - 21 = 5a^2 - 21
]
Таким образом, упрощенное выражение:
[
\boxed{5a^2 - 21}
]