2 Июн 2019 в 19:46
147 +1
0
Ответы
1

To solve this differential equation, we can first rearrange it to separate the variables x and y:

x^3y' + x^2y + x + 1 = 0
x^3y' + x^2y = -x - 1

Now, we can rewrite the equation in the form y' + x/yx/yx/yy = -x^2/y:

y' + x/yx/yx/yy = -x^2/y

This is a first-order linear differential equation. To solve it, we can use an integrating factor. The integrating factor is e^∫(x/y)dx∫(x/y)dx(x/y)dx, which simplifies to e^ln|y| = |y|.

Multiplying throughout the equation by the integrating factor, we get:

|y|y' + x|y| = -x^2

Let z = y^2, then z' = 2yy'. So, we have:

|y|z' + x|y| = -x^2

Now we can solve this new differential equation for z. We can rewrite the equation as:

z' = x2/∣y∣x^2 / |y|x2/∣y - x

Integrating both sides with respect to x, we get:

z = ∫(x2/∣y∣)dx∫(x^2/|y|)dx(x2/∣y)dx - ∫xdx
z = ∫(x2/∣y∣)dx∫(x^2/|y|)dx(x2/∣y)dx - x2/2x^2/2x2/2 + C

Thus, the general solution to the original differential equation is:

y^2 = x3/3x^3/3x3/3ln|x| - x2/2x^2/2x2/2x + C

where C is the constant of integration.

21 Апр 2024 в 01:50
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир