Let's simplify the expression:
√(21+4√17) + √(21-4√17)
We can see that the two terms inside the square roots are conjugates of each other, which means their sum will eliminate the radical.
Let's denote x = √(21+4√17) and y = √(21-4√17)
Now we can rewrite the expression as:
x + y
Now let's add x and y:
x + y = √(21 + 4√17) + √(21 - 4√17)= √(21 + 4√17) + √(21 + 4√17) (since y = √(21 - 4√17) is the conjugate of x)= 2√(21 + 4√17)
Therefore, the simplified expression is 2√(21 + 4√17).
Let's simplify the expression:
√(21+4√17) + √(21-4√17)
We can see that the two terms inside the square roots are conjugates of each other, which means their sum will eliminate the radical.
Let's denote x = √(21+4√17) and y = √(21-4√17)
Now we can rewrite the expression as:
x + y
Now let's add x and y:
x + y = √(21 + 4√17) + √(21 - 4√17)
= √(21 + 4√17) + √(21 + 4√17) (since y = √(21 - 4√17) is the conjugate of x)
= 2√(21 + 4√17)
Therefore, the simplified expression is 2√(21 + 4√17).