To find the product of z1 and z2, we multiply the real parts and imaginary parts separately, and then combine them.
z1 z2 = (4 + i) (2 + i)= 42 + 4i + 2i + ii= 8 + 6*i + i^2
Since i^2 = -1:
z1 z2 = 8 + 6i - 1= 7 + 6*i
Therefore, the product of z1 and z2 is 7 + 6i.
To find the product of z1 and z2, we multiply the real parts and imaginary parts separately, and then combine them.
z1 z2 = (4 + i) (2 + i)
= 42 + 4i + 2i + ii
= 8 + 6*i + i^2
Since i^2 = -1:
z1 z2 = 8 + 6i - 1
= 7 + 6*i
Therefore, the product of z1 and z2 is 7 + 6i.