Най­ди­те корни урав­не­ния х(в квадрате)-7х-18=0

6 Мар 2019 в 19:41
262 +1
0
Ответы
1

Для нахождения корней уравнения (x^2 - 7x - 18 = 0) воспользуемся формулой для нахождения корней квадратного уравнения:

[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}]

Где:

(a = 1) (коэффициент перед (x^2)),(b = -7) (коэффициент перед (x)),(c = -18) (свободный член).

Подставляем значения в формулу:

[x = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot (-18)}}{2 \cdot 1}]

[x = \frac{7 \pm \sqrt{49 + 72}}{2}]

[x = \frac{7 \pm \sqrt{121}}{2}]

[x = \frac{7 \pm 11}{2}]

Таким образом, получаем два корня уравнения:

[x_1 = \frac{7 + 11}{2} = 9]

[x_2 = \frac{7 - 11}{2} = -2]

Итак, корни уравнения (x^2 - 7x - 18 = 0) равны 9 и -2.

18 Сен 2024 в 11:53
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир