17 Мар 2019 в 19:41
245 +1
1
Ответы
1

To solve this equation, we will first rewrite it in terms of a single trigonometric function using the double angle formula for sine:

5sin2x2x2x + 5cosxxx - 8sinxxx - 4 = 0

Using the double angle formula for sine, sin2x2x2x = 2sinxxxcosxxx, we can rewrite the equation as:

10sinxxxcosxxx + 5cosxxx - 8sinxxx - 4 = 0

Now let's factor out the common factors:

5cosxxx2sin(x)+12sin(x) + 12sin(x)+1 - 42sin(x)+12sin(x) + 12sin(x)+1 = 0

5cos(x)−45cos(x) - 45cos(x)42sin(x)+12sin(x) + 12sin(x)+1 = 0

Now we have two possible solutions:

5cosxxx - 4 = 0 or 2sinxxx + 1 = 0

For the first solution, we have:

5cosxxx = 4
cosxxx = 4/5

Since cosine is positive in the first and fourth quadrants, the possible solutions for x are:

x = arccos4/54/54/5 or x = 2π - arccos4/54/54/5

For the second solution, we have:

2sinxxx = -1
sinxxx = -1/2

Since sine is negative in the third and fourth quadrants, the possible solutions for x are:

x = -π/6 or x = -5π/6

Therefore, the solutions to the equation 5sin2x2x2x + 5cosxxx - 8sinxxx - 4 = 0 are:

x = arccos4/54/54/5, 2π - arccos4/54/54/5, -π/6, -5π/6

28 Мая 2024 в 19:55
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир