Для того чтобы найти уравнение окружности, проходящей через точки A и B, нужно найти ее центр и радиус.
Сначала найдем координаты центра окружности. Так как середина отрезка AB - это центр окружности, то координаты центра будут равны средним значениям координат X и Y точек A и B:
Xц = −1−1-1 -1−1−1/2 = -1 Yц = 6+26 + 26+2/2 = 4
Следовательно, центр окружности имеет координаты С−1;4-1;4−1;4.
Теперь найдем радиус окружности. Он равен половине длины диаметра, то есть равен расстоянию от центра до любой из точек A или B. В данном случае, это:
Для того чтобы найти уравнение окружности, проходящей через точки A и B, нужно найти ее центр и радиус.
Сначала найдем координаты центра окружности. Так как середина отрезка AB - это центр окружности, то координаты центра будут равны средним значениям координат X и Y точек A и B:
Xц = −1−1-1 -1−1−1/2 = -1
Yц = 6+26 + 26+2/2 = 4
Следовательно, центр окружности имеет координаты С−1;4-1;4−1;4.
Теперь найдем радиус окружности. Он равен половине длины диаметра, то есть равен расстоянию от центра до любой из точек A или B. В данном случае, это:
r = √ (−1−(−1))2+(6−4)2(-1 - (-1))^2 + (6 - 4)^2(−1−(−1))2+(6−4)2 = √ 0+40 + 40+4 = 2
Итак, уравнение окружности имеет вид:
x+1x + 1x+1^2 + y−4y - 4y−4^2 = 4