To simplify the given trigonometric equation, we can use the product-to-sum identities:
sin A sin B = 0.5cos(A−B)−cos(A+B)cos(A - B) - cos(A + B)cos(A−B)−cos(A+B)
Applying this identity to both sides of the equation, we get:
0.5cos(x−11x)−cos(x+11x)cos(x - 11x) - cos(x + 11x)cos(x−11x)−cos(x+11x) = 0.5cos(3x−9x)−cos(3x+9x)cos(3x - 9x) - cos(3x + 9x)cos(3x−9x)−cos(3x+9x)
Simplifying both sides:
0.5cos(−10x)−cos(12x)cos(-10x) - cos(12x)cos(−10x)−cos(12x) = 0.5cos(−6x)−cos(12x)cos(-6x) - cos(12x)cos(−6x)−cos(12x)
cos−θ-θ−θ = cosθθθ, so we get:
0.5cos(10x)−cos(12x)cos(10x) - cos(12x)cos(10x)−cos(12x) = 0.5cos(−6x)−cos(12x)cos(-6x) - cos(12x)cos(−6x)−cos(12x)
cosθθθ - cosφφφ = 2 sin0.5(θ+φ)0.5(θ + φ)0.5(θ+φ) sin0.5(θ−φ)0.5(θ - φ)0.5(θ−φ), so:
2 sin0.5(10x−12x)0.5(10x - 12x)0.5(10x−12x) sin0.5(10x+12x)0.5(10x + 12x)0.5(10x+12x) = 2 sin0.5(−6x−12x)0.5(-6x - 12x)0.5(−6x−12x) sin0.5(−6x+12x)0.5(-6x + 12x)0.5(−6x+12x)
sin−θ-θ−θ = -sinθθθ, so by simplifying further, we get:
2 sin−x-x−x sin11x11x11x = 2 sin−9x-9x−9x sin3x3x3x
-2 sinxxx sin11x11x11x = -2 sin9x9x9x sin3x3x3x
sinxxx sin11x11x11x = sin9x9x9x sin3x3x3x
Therefore, the simplified form of the given trigonometric equation is sinxxx sin11x11x11x = sin9x9x9x sin3x3x3x.
To simplify the given trigonometric equation, we can use the product-to-sum identities:
sin A sin B = 0.5cos(A−B)−cos(A+B)cos(A - B) - cos(A + B)cos(A−B)−cos(A+B)
Applying this identity to both sides of the equation, we get:
0.5cos(x−11x)−cos(x+11x)cos(x - 11x) - cos(x + 11x)cos(x−11x)−cos(x+11x) = 0.5cos(3x−9x)−cos(3x+9x)cos(3x - 9x) - cos(3x + 9x)cos(3x−9x)−cos(3x+9x)
Simplifying both sides:
0.5cos(−10x)−cos(12x)cos(-10x) - cos(12x)cos(−10x)−cos(12x) = 0.5cos(−6x)−cos(12x)cos(-6x) - cos(12x)cos(−6x)−cos(12x)
cos−θ-θ−θ = cosθθθ, so we get:
0.5cos(10x)−cos(12x)cos(10x) - cos(12x)cos(10x)−cos(12x) = 0.5cos(−6x)−cos(12x)cos(-6x) - cos(12x)cos(−6x)−cos(12x)
cosθθθ - cosφφφ = 2 sin0.5(θ+φ)0.5(θ + φ)0.5(θ+φ) sin0.5(θ−φ)0.5(θ - φ)0.5(θ−φ), so:
2 sin0.5(10x−12x)0.5(10x - 12x)0.5(10x−12x) sin0.5(10x+12x)0.5(10x + 12x)0.5(10x+12x) = 2 sin0.5(−6x−12x)0.5(-6x - 12x)0.5(−6x−12x) sin0.5(−6x+12x)0.5(-6x + 12x)0.5(−6x+12x)
sin−θ-θ−θ = -sinθθθ, so by simplifying further, we get:
2 sin−x-x−x sin11x11x11x = 2 sin−9x-9x−9x sin3x3x3x
-2 sinxxx sin11x11x11x = -2 sin9x9x9x sin3x3x3x
sinxxx sin11x11x11x = sin9x9x9x sin3x3x3x
Therefore, the simplified form of the given trigonometric equation is sinxxx sin11x11x11x = sin9x9x9x sin3x3x3x.